MicroRNA-34A inhibits the growth, invasion and metastasis of gastric cancer by targeting PDGFR and MET expression
نویسندگان
چکیده
Within the family of RTKs (receptor tyrosine kinases), PDGFR (platelet-derived growth factor receptor) has been implicated in carcinogenesis and tumour development. miRNAs (microRNAs), which can target the mRNAs (messenger RNAs) of cancer-associated genes, are abnormally expressed in various cancers. In this study, our aim was to identify the miRNAs that target PDGFR-α/β and to study the functions of these miRNAs. miR-34a was predicted to target PDGFR, and luciferase reporter assays showed that miR-34a could directly target PDGFR. Meanwhile, we found that miR-34a was down-regulated in gastric cancer tissues and was associated with metastasis. Our findings showed that miR-34a could inhibit gastric cancer cell migration, invasion and proliferation, but these tumourigenic properties were only partially restored when PDGFR-α/β was overexpressed. In subsequent experiments, we found that the overexpression of both PDGFR and MET could completely restore the gastric cancer tumourigenic properties. Moreover, the cancer-associated cell signalling pathway was studied, and we found that miR-34a could inhibit Akt [PKB (protein kinase B)] phosphorylation, which was restored by the overexpression of both PDGFR and MET. In conclusion, miR-34a may act as a potential tumour suppressor in gastric cancer and is associated with the mechanisms of gastric cancer metastasis; miR-34a can inhibit gastric cancer tumourigenesis by targeting PDGFR and MET through the PI3K (phosphoinositide 3-kinase)/Akt pathway.
منابع مشابه
MicroRNA‑34a attenuates the proliferation, invasion and metastasis of gastric cancer cells via downregulation of MET.
Proliferation, invasion and metastasis are key features of gastric cancer, contributing to high mortality rates in patients with gastric cancer worldwide. As a direct target of p53, the functions of microRNA (miR)‑34a are important, but controversial, in the progression of gastric cancer. In the present study, the clinical importance of miR‑34a in GC specimens (n=40) were investigated and were ...
متن کاملmiR-506 inhibits cell proliferation and invasion by targeting TET family in colorectal cancer
Objective(s): Ten-eleven translocation (TET) family members have been shown to be involved in the development of many tumors. However, the biological role of the TET family and its mechanism of action in colorectal carcinogenesis and progression remain poorly understood. Materials and Methods:We measured the expression levels of TET family members in colorectal cancer (CRC) specimens, in the c...
متن کاملMiR-493 suppresses the proliferation and invasion of gastric cancer cells by targeting RhoC
Objective(s):MiRNAs have been proposed to be key regulators of tumorigenesis, progression and metastasis. However, their effect and prognostic value in gastric cancer is still poorly known. Materials and Methods: Gastric cancer cell lines were cultured. Tissue samples obtained from 36 gastric cancer patients were used for quantitative real-time PCR (qRT-PCR) analysis. The tissue microarrays (T...
متن کاملmicroRNA-34a is tumor suppressive in brain tumors and glioma stem cells.
We recently found that microRNA-34a (miR-34a) is downregulated in human glioma tumors as compared to normal brain, and that miR-34a levels in mutant-p53 gliomas were lower than in wildtype-p53 tumors. We showed that miR-34a expression in glioma and medulloblastoma cells inhibits cell proliferation, G1/S cell cycle progression, cell survival, cell migration and cell invasion, but that miR-34a ex...
متن کاملMicroRNA-34a targets epithelial to mesenchymal transition-inducing transcription factors (EMT-TFs) and inhibits breast cancer cell migration and invasion
MicroRNA-34a (miR-34a) plays an essential role against tumorigenesis and progression of cancer metastasis. Here, we analyzed the expression, targets and functional effects of miR-34a on epithelial to mesenchymal transition-inducing transcription factors (EMT-TFs), such as TWIST1, SLUG and ZEB1/2, and an EMT-inducing protein NOTCH1 in breast cancer (BC) cell migration and invasion and its correl...
متن کامل